Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.526
Filtrar
1.
Cell Death Dis ; 13(10): 865, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224178

RESUMO

Acute-on-chronic liver failure is a distinct clinical syndrome characterized by a dysregulated immune response and extensive hepatocyte death without satisfactory therapies. As a cytoplasmic degradative and quality-control process, autophagy was implicated in maintaining intracellular homeostasis, and decreased hepatic autophagy was found in many liver diseases and contributes to disease pathogenesis. Previously, we identified the therapeutic potential of mesenchymal stem cells (MSCs) in ACLF patients; however, the intrinsic mechanisms are incompletely understood. Herein, we showed that MSCs restored the impaired autophagic flux and alleviated liver injuries in ACLF mice, but these effects were abolished when autophago-lysosomal maturation was inhibited by leupeptin (leu), suggesting that MSCs exerted their hepatoprotective function in a pro-autophagic dependent manner. Moreover, we described a connection between transcription factor EB (TFEB) and autophagic activity in this context, as evidenced by increased nuclei translocation of TFEB elicited by MSCs were capable of promoting liver autophagy. Mechanistically, we confirmed that let-7a-5p enriched in MSCs derived exosomes (MSC-Exo) could activate autophagy by targeting MAP4K3 to reduce TFEB phosphorylation, and MAP4K3 knockdown partially attenuates the effect of anti-let-7a-5p oligonucleotide via decreasing the inflammatory response, in addition, inducing autophagy. Altogether, these findings revealed that the hepatoprotective effect of MSCs may partially profit from its exosomal let-7a-5p mediating autophagy repairment, which may provide new insights for the therapeutic target of ACLF treatment.


Assuntos
Insuficiência Hepática Crônica Agudizada , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células-Tronco Mesenquimais , MicroRNAs/genética , Insuficiência Hepática Crônica Agudizada/genética , Insuficiência Hepática Crônica Agudizada/metabolismo , Animais , Autofagia , Leupeptinas/farmacologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Oligonucleotídeos/metabolismo
2.
Physiol Rep ; 10(15): e15411, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35924300

RESUMO

Prolonged tourniquet use can lead to tissue ischemia and can cause progressive muscle and nerve injuries. Such injuries are accompanied by calpain activation and subsequent Wallerian-like degeneration. Several known inhibitors, including leupeptin, are known to impede the activity of calpain and associated tissue damage. We hypothesize that employment of leupeptin in a rat model of prolonged hind limb ischemia can mitigate muscle and nerve injuries. Sprague-Dawley rats (n = 10) weighing between 300-400 g were employed in this study. Their left hind limbs were subjected to blood flow occlusion for a period of 2-h using a neonatal blood pressure cuff. Five rats were given twice weekly intramuscular leupeptin injections, while the other five received saline. After 2 weeks, the animals were euthanized, their sciatic nerves and gastrocnemius muscles were harvested, fixed, stained, and analyzed using NIH Image J software. The administration of leupeptin resulted in larger gastrocnemius muscle fiber cross-sectional areas for the right (non-tourniquet applied) hindlimb as compared to that treated with the saline (p = 0.0110). However, no statistically significant differences were found between these two groups for the injured left hindlimb (p = 0.1440). With regards to the sciatic nerve cross-sectional areas and sciatic functional index, no differences were detected between the leupeptin and control treated groups for both the healthy and injured hindlimbs. This research provides new insights on how to employ leupeptin to inhibit the degenerative effects of calpain and preserve tissues following ischemia resulting from orthopedic or plastic surgery procedures.


Assuntos
Calpaína , Isquemia , Animais , Membro Posterior/irrigação sanguínea , Isquemia/tratamento farmacológico , Leupeptinas/farmacologia , Músculo Esquelético , Ratos , Ratos Sprague-Dawley
3.
Sci Rep ; 12(1): 2706, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177721

RESUMO

Intracytoplasmic sperm injection (ICSI) is an effective reproductive technique for obtaining rat offspring using preserved sperm with low or no motility. However, rat oocytes undergo spontaneous activation immediately after retrieval from the oviduct and poorly develop after ICSI unless it is performed quickly. Here, we evaluated whether treatment with MG132, the proteasome inhibitor, suppresses the spontaneous activation of oocytes before and during ICSI. After retrieval from the oviducts, the rate of development into morula and blastocyst from the oocytes cultured in vitro for 1 h prior to ICSI significantly decreased compared with that from the control oocytes subject to ICSI without culture (7% versus 36%). However, a higher proportion of oocytes treated with MG132 for 0, 1, and 3 h before and during ICSI developed into morulae and blastocysts (70%, 60%, and 52%, respectively). Offspring were obtained from oocytes treated with MG132 for 0 and 1 h before and during ICSI (percentage: 31%). Altogether, MG132 could suppress the spontaneous activation of rat oocytes and increase embryonic development after ICSI.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Leupeptinas/farmacologia , Leupeptinas/uso terapêutico , Oócitos/efeitos dos fármacos , Injeções de Esperma Intracitoplásmicas/métodos , Animais , Gonadotropina Coriônica/farmacologia , Gonadotropina Coriônica/uso terapêutico , Cromossomos/efeitos dos fármacos , Feminino , Masculino , Oócitos/citologia , Ratos Wistar , Injeções de Esperma Intracitoplásmicas/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Fatores de Tempo
4.
Cells ; 11(4)2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35203262

RESUMO

Progeroid syndromes (PS), including Hutchinson-Gilford Progeria Syndrome (HGPS), are premature and accelerated aging diseases, characterized by clinical features mimicking physiological aging. Most classical HGPS patients carry a de novo point mutation within exon 11 of the LMNA gene encoding A-type lamins. This mutation activates a cryptic splice site, leading to the production of a truncated prelamin A, called prelamin A ∆50 or progerin, that accumulates in HGPS cell nuclei and is a hallmark of the disease. Some patients with PS carry other LMNA mutations and are named "HGPS-like" patients. They produce progerin and/or other truncated prelamin A isoforms (∆35 and ∆90). We previously found that MG132, a proteasome inhibitor, induced progerin clearance in classical HGPS through autophagy activation and splicing regulation. Here, we show that MG132 induces aberrant prelamin A clearance and improves cellular phenotypes in HGPS-like patients' cells other than those previously described in classical HGPS. These results provide preclinical proof of principle for the use of a promising class of molecules toward a potential therapy for children with HGPS-like or classical HGPS.


Assuntos
Progéria , Núcleo Celular , Humanos , Leupeptinas/farmacologia , Leupeptinas/uso terapêutico , Fenótipo , Progéria/tratamento farmacológico , Progéria/genética
5.
PLoS One ; 17(2): e0262612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35196318

RESUMO

Orthodontic treatment requires the regulation of bone remodeling in both compression and tension sides. Transforming growth factor-ß1 (TGF-ß1) is an important coupling factor for bone remodeling. However, the mechanism underlying the TGF-ß1-mediated regulation of the osteoclast-supporting activity of osteoblasts and stromal cells remain unclear. The current study investigated the effect of TGF-ß1 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in stromal cells induced by 1α,25(OH)2D3 (D3) and dexamethasone (Dex). TGF-ß1 downregulated the expression of RANKL induced by D3 and Dex in mouse bone marrow stromal lineage, ST2 cells. Co-culture system revealed that TGF-ß1 suppressed osteoclast differentiation from bone marrow cell induced by D3 and Dex-activated ST2 cells. The inhibitory effect of TGF-ß1 on RANKL expression was recovered by inhibiting the interaction between TGF-ß1 and the TGF-ß type I/activin receptor or by downregulating of smad2/3 expression. Interestingly, TGF-ß1 degraded the retinoid X receptor (RXR)-α protein which forms a complex with vitamin D receptor (VDR) and regulates transcriptional activity of RANKL without affecting nuclear translocation of VDR and phosphorylation of signal transducer and activator of transcription3 (STAT3). The degradation of RXR-α protein by TGF-ß1 was recovered by a ubiquitin-proteasome inhibitor. We also observed that poly-ubiquitination of RXR-α protein was induced by TGF-ß1 treatment. These results indicated that TGF-ß1 downregulates RANKL expression and the osteoclast-supporting activity of osteoblasts/stromal cells induced by D3 and Dex through the degradation of the RXR-α protein mediated by ubiquitin-proteasome system.


Assuntos
Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Técnicas de Cocultura , Leupeptinas/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Osteoclastos/citologia , Inibidores de Proteassoma/farmacologia , Proteínas Recombinantes/farmacologia , Transdução de Sinais/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Transfecção , Ubiquitinação/genética
6.
PLoS Genet ; 18(1): e1010015, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025870

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder characterized by progressive weakness and degeneration of specific muscles. OPMD is due to extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). Aggregation of the mutant protein in muscle nuclei is a hallmark of the disease. Previous transcriptomic analyses revealed the consistent deregulation of the ubiquitin-proteasome system (UPS) in OPMD animal models and patients, suggesting a role of this deregulation in OPMD pathogenesis. Subsequent studies proposed that UPS contribution to OPMD involved PABPN1 aggregation. Here, we use a Drosophila model of OPMD to address the functional importance of UPS deregulation in OPMD. Through genome-wide and targeted genetic screens we identify a large number of UPS components that are involved in OPMD. Half dosage of UPS genes reduces OPMD muscle defects suggesting a pathological increase of UPS activity in the disease. Quantification of proteasome activity confirms stronger activity in OPMD muscles, associated with degradation of myofibrillar proteins. Importantly, improvement of muscle structure and function in the presence of UPS mutants does not correlate with the levels of PABPN1 aggregation, but is linked to decreased degradation of muscle proteins. Oral treatment with the proteasome inhibitor MG132 is beneficial to the OPMD Drosophila model, improving muscle function although PABPN1 aggregation is enhanced. This functional study reveals the importance of increased UPS activity that underlies muscle atrophy in OPMD. It also provides a proof-of-concept that inhibitors of proteasome activity might be an attractive pharmacological approach for OPMD.


Assuntos
Atrofia Muscular/patologia , Distrofia Muscular Oculofaríngea/patologia , Proteína I de Ligação a Poli(A)/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Modelos Animais de Doenças , Drosophila melanogaster , Regulação da Expressão Gênica , Testes Genéticos , Humanos , Leupeptinas/farmacologia , Leupeptinas/uso terapêutico , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Distrofia Muscular Oculofaríngea/tratamento farmacológico , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Mutação , Proteína I de Ligação a Poli(A)/química , Estudo de Prova de Conceito , Agregados Proteicos/efeitos dos fármacos
7.
Bioengineered ; 13(2): 3620-3633, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34699308

RESUMO

Preeclampsia (PE) is a pregnancy disorder characterized by excessive trophoblast cell death. This study aims to explore the exact mechanism of the ubiquitination level of FUN14 domain containing 1 (FUNDC1) in mitophagy and injury in hypoxic trophoblast cells. In this study, HTR-8/SVneo trophoblast cells were cultured under normoxic and hypoxic conditions and PE mouse model was established. We found low ubiquitination level of FUNDC1 in hypoxic trophoblast cells and placenta of pregnant women with PE. Proteasome inhibitor MG-132 and protease activator MF-094 were added into HTR-8/SVneo trophoblast cells. Proteasome inhibitor MG-132 decreased FUNDC1 ubiquitination level while protease activator MF-094 increased FUNDC1 ubiquitination level. Inhibition of FUNDC1 ubiquitination promoted mitophagy and mitochondrial membrane potential (Δψm) in normoxic trophoblast cells, increased levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and decreased levels of glutathione (GSH) and superoxide dismutase (SOD). In addition, FUNDC1 ubiquitination alleviated cell injury in PE mice in vivo. In conclusion, increased FUNDC1 ubiquitination level inhibited mitophagy and Δψm changes in hypoxic trophoblast cells, and thus alleviated oxidative injury.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Pré-Eclâmpsia/metabolismo , Trofoblastos/metabolismo , Ubiquitinação , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Feminino , Humanos , Leupeptinas/farmacologia , Gravidez
8.
Microvasc Res ; 140: 104276, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34742813

RESUMO

PURPOSE: We previously reported that a calpain inhibitor (CAI) prevents the development of atherosclerosis in rats. This study aimed to investigate the effects of CAI (1 mg/kg) on atherosclerosis in apolipoprotein E knockout (ApoE KO) mice that were fed a high-fat diet (HFD) and explore the underlying mechanism by analyzing the expression of genes related to the uptake and efflux of cholesterol. METHODS: Atherosclerotic plaques were evaluated. The activity of calpain in the aorta and that of superoxide dismutase (SOD) in the serum were assessed. Lipid profiles in the serum and liver were examined. Serum oxidized low-density lipoprotein (oxLDL), malondialdehyde (MDA), tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) levels were measured. The mRNA expressions of CD68, TNF-α, IL-6, CD36, scavenger receptor (SR-A), peroxisome proliferator-activated receptor gamma (PPAR-γ), liver-x-receptor alpha (LXR-α), and ATP-binding cassette transporter class A1 (ABCA1) in the aorta and peritoneal macrophages were also evaluated. RESULTS: CAI reduced calpain activity in the aorta. CAI also impeded atherosclerotic lesion formation and mRNA expression of CD68 in the aorta and peritoneal macrophages of ApoE KO mice compared with those of mice receiving HFD. However, CAI had no effect on body weight and lipid levels in both the serum and liver. CAI significantly decreased MDA, oxLDL, TNF-α, and IL-6 levels and increased SOD activity in the serum. Moreover, CAI significantly inhibited the mRNA expression of TNF-α and IL-6 genes in the aorta and peritoneal macrophages. In addition, CAI significantly downregulated the mRNA expression of scavenger receptors CD36 and SR-A and upregulated the expression of genes involved in the cholesterol efflux pathway, i.e., PPAR-γ, LXR-α, and ABCA1 in the aorta and peritoneal macrophages. CONCLUSIONS: CAI inhibited the development of atherosclerotic lesions in ApoE KO mice, and this effect might be related to the reduction of oxidative stress and inflammation and the improvement of cholesterol intake and efflux pathways.


Assuntos
Aorta/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Calpaína/antagonistas & inibidores , Colesterol/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Leupeptinas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , RNA Mensageiro/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Aorta/enzimologia , Aorta/patologia , Doenças da Aorta/enzimologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Calpaína/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , PPAR gama/genética , PPAR gama/metabolismo , Placa Aterosclerótica , RNA Mensageiro/genética , Receptores Depuradores Classe A/genética , Receptores Depuradores Classe A/metabolismo
9.
J Appl Microbiol ; 132(2): 1176-1184, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34496097

RESUMO

AIMS: Effects of a proteasome inhibitor, MG-132, on the riboflavin production in Ashbya gossypii were investigated to elucidate the relationship of the riboflavin production with flavoprotein homeostasis. METHODS AND RESULTS: The addition of MG-132 to the liquid medium reduced the specific riboflavin production by 79% in A. gossypii at 25 µM after 24 h. The addition of the inhibitor also caused the accumulation of reactive oxygen species and ubiquitinated proteins. These results indicated that MG-132 works in A. gossypii without any genetic engineering and reduces riboflavin production. In the presence of 25 µM MG-132, specific NADH dehydrogenase activity was increased by 1.4-fold compared to DMSO, but specific succinate dehydrogenase (SDH) activity was decreased to 52% compared to DMSO. Additionally, the amount of AgSdh1p (ACR052Wp) was also reduced. Specific riboflavin production was reduced to 22% when 20 mM malonate, a SDH inhibitor, was added to the culture medium. The riboflavin production in heterozygous AgSDH1 gene-disrupted mutant (AgSDH1-/+ ) was reduced to 63% compared to that in wild type. CONCLUSIONS: MG-132 suppresses the riboflavin production and SDH activity in A. gossypii. SDH is one of the flavoproteins involved in the riboflavin production in A. gossypii. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that MG-132 has a negative influence on the riboflavin production and SDH activity in A. gossypii and leads to the elucidation of the connection of the riboflavin production with flavoproteins.


Assuntos
Inibidores de Proteassoma , Riboflavina , Saccharomycetales/metabolismo , Engenharia Genética , Leupeptinas/farmacologia , Inibidores de Proteassoma/farmacologia , Riboflavina/biossíntese , Saccharomycetales/efeitos dos fármacos
10.
J Bacteriol ; 204(1): e0045621, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34633870

RESUMO

The protective mechanisms of blood-brain barrier (BBB) prohibiting entry of pathogens into central nervous system (CNS) are critical for maintenance of brain homeostasis. These include various intracellular defense mechanisms that are vital to block transcytosis of neurotropic pathogens into the CNS. However, mechanistic details of coordination between these defense pathways remain unexplored. In this study, we established that BBB-driven ubiquitination acts as a major intracellular defense mechanism for clearance of Streptococcus pneumoniae, a critical neurotropic pathogen, during transit through BBB. Our findings suggest that the BBB employs differential ubiquitination with either K48- or K63-ubiquitin (Ub) chain topologies as an effective strategy to target S. pneumoniae toward diverse killing pathways. While K63-Ub decoration triggers autophagic killing, K48-Ub directs S. pneumoniae exclusively toward proteasomes. Time-lapse fluorescence imaging involving proteasomal marker LMP2 revealed that in the BBB, the majority of the ubiquitinated S. pneumoniae was cleared by proteasome. Fittingly, inhibition of proteasome and autophagy pathway led to accumulation of K48-Ub- and K63-Ub-marked S. pneumoniae, respectively, and triggered significant increases in intracellular S. pneumoniae burden. Moreover, genetic impairment of either K48- or K63-Ub chain formation demonstrated that although both chain types are key in disposal of intracellular S. pneumoniae, K48-Ub chains and subsequent proteasomal degradation have more pronounced contributions to intracellular S. pneumoniae killing in the BBB. Collectively, these observations, for the first time, illustrated a pivotal role of differential ubiquitination deployed by BBB in orchestrating a symphony of intracellular defense mechanisms for interception and degradation of S. pneumoniae, blocking its entry into the brain, which could be exploited to prevent bacterial CNS infections. IMPORTANCE The blood-brain barrier (BBB) represents a unique cellular barrier that provides structural integrity and protection to the CNS from pathogen invasion. Recently, ubiquitination, which is key for cellular homeostasis, was shown to be involved in pathogen clearance. In this study, we deciphered that the BBB deploys differential ubiquitination as an effective strategy to prevent S. pneumoniae trafficking into the brain. The different ubiquitin chain topologies formed on S. pneumoniae dictated the selection of downstream degradative pathways, namely, autophagy and proteasomes, among which the contribution of the proteasomal system in S. pneumoniae killing is more pronounced. Overall our study revealed how the BBB deploys differential ubiquitination as a strategy for synchronization of various intracellular defense pathways, which work in tandem to ensure the brain's identity as an immunologically privileged site.


Assuntos
Barreira Hematoencefálica/fisiologia , Células Endoteliais/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Streptococcus pneumoniae/fisiologia , Ubiquitinas/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Autofagia/efeitos dos fármacos , Biomarcadores , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Gentamicinas/administração & dosagem , Gentamicinas/farmacologia , Humanos , Leupeptinas/farmacologia , Imagem Óptica/métodos , Penicilinas/administração & dosagem , Penicilinas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação , Ubiquitinas/química
11.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769210

RESUMO

After almost two years from its first evidence, the COVID-19 pandemic continues to afflict people worldwide, highlighting the need for multiple antiviral strategies. SARS-CoV-2 main protease (Mpro/3CLpro) is a recognized promising target for the development of effective drugs. Because single target inhibition might not be sufficient to block SARS-CoV-2 infection and replication, multi enzymatic-based therapies may provide a better strategy. Here we present a structural and biochemical characterization of the binding mode of MG-132 to both the main protease of SARS-CoV-2, and to the human Cathepsin-L, suggesting thus an interesting scaffold for the development of double-inhibitors. X-ray diffraction data show that MG-132 well fits into the Mpro active site, forming a covalent bond with Cys145 independently from reducing agents and crystallization conditions. Docking of MG-132 into Cathepsin-L well-matches with a covalent binding to the catalytic cysteine. Accordingly, MG-132 inhibits Cathepsin-L with nanomolar potency and reversibly inhibits Mpro with micromolar potency, but with a prolonged residency time. We compared the apo and MG-132-inhibited structures of Mpro solved in different space groups and we identified a new apo structure that features several similarities with the inhibited ones, offering interesting perspectives for future drug design and in silico efforts.


Assuntos
Tratamento Farmacológico da COVID-19 , Catepsina L/efeitos dos fármacos , Proteases 3C de Coronavírus/efeitos dos fármacos , Leupeptinas/química , Leupeptinas/farmacologia , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Domínio Catalítico/efeitos dos fármacos , Catepsina L/química , Proteases 3C de Coronavírus/química , Desenho de Fármacos , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptidomiméticos , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Replicação Viral/efeitos dos fármacos , Difração de Raios X
12.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638951

RESUMO

The protein phosphorylation of the membrane-bound mitochondrial proteins has become of interest from the point of view of its regulatory role of the function of the respiratory chain, opening of the mitochondrial permeability transition pore (mPTP), and initiation of apoptosis. Earlier, we noticed that upon phosphorylation of proteins in some proteins, the degree of their phosphorylation increases with the opening of mPTP. Two isoforms of myelin basic protein and cyclic nucleotide phosphodiesterase were identified in rat brain non-synaptic mitochondria and it was concluded that they are involved in mPTP regulation. In the present study, using the mass spectrometry method, the phosphorylated protein was identified as Calpain 3 in rat brain non-synaptic mitochondria. In the present study, the phosphoprotein Calpain-3 (p94) (CAPN3) was identified in the rat brain mitochondria as a phosphorylated truncated form of p60-62 kDa by two-dimensional electrophoresis and mass spectrometry. We showed that the calpain inhibitor, calpeptin, was able to suppress the Ca2+ efflux from mitochondria, preventing the opening of mPTP. It was found that phosphorylated truncated CALP3 with a molecular weight of 60-62 contains p-Tyr, which indicates the possible involvement of protein tyrosine phosphatase in this process.


Assuntos
Encéfalo/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Calpaína/metabolismo , Isoenzimas/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteínas Musculares/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Calpaína/antagonistas & inibidores , Calpaína/química , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Leupeptinas/farmacologia , Masculino , Peso Molecular , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/química , Fosforilação , Transporte Proteico , Ratos
13.
Life Sci ; 287: 120092, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715142

RESUMO

AIMS: Transforming growth factor-ß (TGF-ß) mediates fibrotic manifestations of diabetic nephropathy. We demonstrated proteasomal degradation of anti-fibrotic protein, nuclear factor-erythroid derived 2 (NF-E2), in TGF-ß treated human renal proximal tubule (HK-11) cells and in diabetic mouse kidneys. The current study examined the role of mitogen-activated protein kinase (MAPK) pathways in mediating NF-E2 proteasomal degradation and stimulating profibrotic signaling in HK-11 cells. MAIN METHODS: HK-11 cells were pretreated with vehicle or appropriate proteasome and MAPK inhibitors, MG132 (0.5 µM), SB203580 (1 µM), PD98059 (25 µM) and SP600125 (10 µM), respectively, followed by treatment with/without TGF-ß (10 ng/ml, 24 h). Cell lysates and kidney homogenates from FVB and OVE26 mice treated with/without MG132 were immunoblotted with appropriate antibodies. pUse vector and pUse-NF-E2 cDNA were transfected in HK-11 cells and effects of TGF-ß on JNK MAPK phosphorylation (pJNK) was examined. KEY FINDINGS: We demonstrated activation of p38, ERK, and JNK MAPK pathways in TGF-ß treated HK-11 cells. Dual p38 and ERK MAPK blockade prevented TGF-ß-induced pSer82Hsp27, fibronectin and connective tissue growth factor (CTGF) expression while preserving NF-E2 expression. Blockade of JNK MAPK inhibited TGF-ß-induced CTGF expression without preserving NF-E2 expression. MG132 treatment prevented TGF-ß-induced pJNK in HK-11 cells and in type 1 diabetic OVE26 mouse kidneys, demonstrating that TGF-ß- and diabetes-induced pJNK occurs downstream of proteasome activation. A direct role for NF-E2 in modulating pJNK activation was demonstrated by NF-E2 over-expression. SIGNIFICANCE: ERK and p38 MAPK promotes NF-E2 proteasomal degradation while proteasome activation promotes pJNK and profibrotic signaling in renal proximal tubule cells.


Assuntos
Túbulos Renais Proximais/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Subunidade p45 do Fator de Transcrição NF-E2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Antracenos/farmacologia , Linhagem Celular Transformada , Inibidores de Cisteína Proteinase/farmacologia , Feminino , Fibrose , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Leupeptinas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Transgênicos
14.
J Neuroimmunol ; 361: 577752, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715591

RESUMO

Neuromyelitis Optica (NMO) is an autoimmune inflammatory disease that affects the optic nerves and spinal cord. The autoantibody is generated against the abundant water channel protein of the brain, Aquaporin 4 (AQP4). Of the two isoforms of AQP4, the shorter one (M23) often exists as a supramolecular assembly known as an orthogonal array of particles (OAPs). There have been debates about the fate of these AQP4 clusters upon binding to the antibody, the exact mechanism of its turnover, and the proteins associated with the process. Recently several clinical cases of NMO were reported delineating the effect of Rituximab (RTX) therapy. Extending these reports at the cell signaling level, we developed a glioma based cellular model that mimicked antibody binding and helped us track the subsequent events including a variation of AQP4 levels, alterations in cellular morphology, and the changes in downstream signaling cascades. Our results revealed the extent of perturbations in the signaling pathways related to stress involving ERK, JNK, and AKT1 together with markers for cell death. We could also decipher the possible routes of degradation of AQP4, post-exposure to antibody. We further investigated the effect of autoantibody on AQP4 transcriptional level and involvement of FOXO3a and miRNA-145 in the regulation of transcription. This study highlights the differential outcome at the cellular level when treated with the serum of the same patient pre and post RTX therapy and for the first time mechanistically describes the effect of RTX.


Assuntos
Aquaporina 4/metabolismo , Autoanticorpos/sangue , Autoantígenos/metabolismo , Imunoglobulina G/sangue , Neuromielite Óptica/metabolismo , Rituximab/uso terapêutico , Adulto , Aquaporina 4/genética , Aquaporina 4/imunologia , Autoantígenos/genética , Autoantígenos/imunologia , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/ultraestrutura , Forma Celular , Extensões da Superfície Celular/ultraestrutura , Feminino , Proteína Forkhead Box O3/fisiologia , Glioblastoma , Humanos , Leupeptinas/farmacologia , Masculino , MicroRNAs/genética , Microscopia Confocal , Neuromielite Óptica/tratamento farmacológico , Neuromielite Óptica/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Análise de Célula Única , Transcrição Gênica , Adulto Jovem
15.
Viruses ; 13(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34696420

RESUMO

The mitochondrial antiviral signaling (MAVS) protein, a critical adapter, links the upstream recognition of viral RNA to downstream antiviral signal transduction. However, the interaction mechanism between avian metapneumovirus subgroup C (aMPV/C) infection and MAVS remains unclear. Here, we confirmed that aMPV/C infection induced a reduction in MAVS expression in Vero cells in a dose-dependent manner, and active aMPV/C replication was required for MAVS decrease. We also found that the reduction in MAVS occurred at the post-translational level rather than at the transcriptional level. Different inhibitors were used to examine the effect of proteasome or autophagy on the regulation of MAVS. Treatment with a proteasome inhibitor MG132 effectively blocked MAVS degradation. Moreover, we demonstrated that MAVS mainly underwent K48-linked ubiquitination in the presence of MG132 in aMPV/C-infected cells, with amino acids 363, 462, and 501 of MAVS being pivotal sites in the formation of polyubiquitin chains. Finally, E3 ubiquitin ligases for MAVS degradation were screened and identified and RNF5 targeting MAVS at Lysine 363 and 462 was shown to involve in MAVS degradation in aMPV/C-infected Vero cells. Overall, these results reveal the molecular mechanism underlying aMPV/C infection-induced MAVS degradation by the ubiquitin-proteasome pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Metapneumovirus/metabolismo , Mitocôndrias/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Chlorocebus aethiops , Leupeptinas/farmacologia , Metapneumovirus/patogenicidade , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Transdução de Sinais/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Células Vero
16.
Cell Death Dis ; 12(10): 937, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645792

RESUMO

Breast cancer is the most commonly diagnosed malignant tumor among females. Estrogen receptor α (ERα) is initially expressed in 70% of breast cancers and is a well-known target of endocrine therapy for ERα-positive breast cancer. In the present study, we identified MINDY1, a member belongs to the motif interacting with Ubcontaining novel DUB family (MINDY), as a potential deubiquitylase of ERα in breast cancer. There was a positive correlation between ERα and MINDY1 protein levels in human breast cancer tissues. We found that high expression of MINDY1 was associated with poor prognosis. MINDY1 interacted with ERα, thereby mediating the deubiquitination of ERα and increased its stability in a deubiquitylation activity-dependent manner. MINDY1 depletion significantly decreased the ERα protein level and ERα signaling activity in breast cancer cells. Specifically, MINDY1 associated with the N-terminal of ERα via its catalytic domain, thus inhibiting K48-specific poly-ubiquitination process on ERα protein. In addition, MINDY1 depletion led to growth inhibition and cell cycle arrest of ERα-positive breast cancer cells. Finally, overexpression of ERα could rescue the MINDY1 depletion-induced growth inhibition both in vitro and in vivo, suggesting that MINDY1 promotes breast carcinogenesis through increasing ERα stability. Overall, our study proposed a novel post-translational mechanism of ERα in supporting breast cancer progression. Targeting the MINDY1 may prove to be a promising strategy for patients with ERα-positive breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Enzimas Desubiquitinantes/metabolismo , Receptor alfa de Estrogênio/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Leupeptinas/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Inibidores de Proteassoma/farmacologia , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
17.
Cell Rep ; 36(12): 109717, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551305

RESUMO

To maintain secretory pathway fidelity, misfolded proteins are commonly retained in the endoplasmic reticulum (ER) and selected for ER-associated degradation (ERAD). Soluble misfolded proteins use ER chaperones for retention, but the machinery that restricts aberrant membrane proteins to the ER is unclear. In fact, some misfolded membrane proteins escape the ER and traffic to the lysosome/vacuole. To this end, we describe a model substrate, SZ∗, that contains an ER export signal but is also targeted for ERAD. We observe decreased ER retention when chaperone-dependent SZ∗ ubiquitination is compromised. In addition, appending a linear tetra-ubiquitin motif onto SZ∗ overrides ER export. By screening known ubiquitin-binding proteins, we then positively correlate SZ∗ retention with Ubx2 binding. Deletion of Ubx2 also inhibits the retention of another misfolded membrane protein. Our results indicate that polyubiquitination is sufficient to retain misfolded membrane proteins in the ER prior to ERAD.


Assuntos
Degradação Associada com o Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Choque Térmico HSP40/metabolismo , Leupeptinas/farmacologia , Proteínas de Membrana/química , Ligação Proteica , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Ubiquitina/metabolismo , Ubiquitinação
18.
J Biochem Mol Toxicol ; 35(11): e22894, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34418242

RESUMO

Dysfunction of the ubiquitin-proteasome system has been linked to the pathogenesis of a variety of diseases. Proteasome inhibition not only exerts antitumor effects but also affects inflammatory signaling pathways. MG132, a proteasome inhibitor, has been shown to induce tumor cell apoptosis. However, its role in the induction of macrophage apoptosis remains unknown. In our study, we investigated the mechanism of the proapoptotic effects of MG132 in macrophages. Our data showed that MG132 treatment induced mitochondrial reactive oxygen species (ROS) generation and loss of mitochondrial membrane potential in macrophages. We found that proteasome inhibition induced a significant increase in the apoptosis rate, as evidenced by cleavage of caspase-3 and cleavage of poly(ADP-ribose) polymerase (PARP). Moreover, (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenyl-phosphonium chloride (Mito-TEMPO) attenuated MG132-induced apoptosis. In conclusion, proteasome inhibition by MG132 can induce macrophage apoptosis by promoting the production of ROS and mitochondrial dysfunction.


Assuntos
Apoptose/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Animais , Caspase 3/metabolismo , Humanos , Leupeptinas/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteólise , Espécies Reativas de Oxigênio/metabolismo
19.
Biochem J ; 478(16): 3145-3155, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34405859

RESUMO

Autophagy receptor p62/SQSTM1 signals a complex network that links autophagy-lysosomal system to proteasome. Phosphorylation of p62 on Serine 349 (P-Ser349 p62) is involved in a cell protective, antioxidant pathway. We have shown previously that P-Ser349 p62 occurs and is rapidly degraded during human synovial fibroblasts autophagy. In this work we observed that fingolimod (FTY720), used as a medication for multiple sclerosis, induced coordinated expression of p62, P-Ser349 p62 and inhibitory TFEB form, phosphorylated on Serine 211 (P-Ser211 TFEB), in human synovial fibroblasts. These effects were mimicked and potentiated by proteasome inhibitor MG132. In addition, FTY720 induced autophagic flux, LC3B-II up-regulation, Akt phosphorylation inhibition on Serine 473 but down-regulated TFEB, suggesting stalled autophagy. FTY720 decreased cytoplasmic fraction contained TFEB but induced TFEB in nuclear fraction. FTY720-induced P-Ser211 TFEB was mainly found in membrane fraction. Autophagy and VPS34 kinase inhibitor, autophinib, further increased FTY720-induced P-Ser349 p62 but inhibited concomitant expression of P-Ser211 TFEB. These results suggested that P-Ser211 TFEB expression depends on autophagy. Overexpression of GFP tagged TFEB in HEK293 cells showed concomitant expression of its phosphorylated form on Serine 211, that was down-regulated by autophinib. These results suggested that autophagy might be autoregulated through P-Ser211 TFEB as a negative feedback loop. Of interest, overexpression of p62, p62 phosphorylation mimetic (S349E) mutant and phosphorylation deficient mutant (S349A) in HEK293 cells markedly induced P-Ser211 TFEB. These results showed that p62 is involved in regulation of TFEB phosphorylation on Serine 211 but that this involvement does not depend on p62 phosphorylation on Serine 349.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fibroblastos/metabolismo , Proteína Sequestossoma-1/metabolismo , Serina/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Western Blotting , Células Cultivadas , Inibidores de Cisteína Proteinase/farmacologia , Fibroblastos/efeitos dos fármacos , Cloridrato de Fingolimode/farmacologia , Células HEK293 , Humanos , Imunossupressores/farmacologia , Leupeptinas/farmacologia , Microscopia de Fluorescência , Mutação , Fosforilação/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteína Sequestossoma-1/genética , Serina/genética , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo
20.
Anticancer Res ; 41(7): 3271-3279, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230121

RESUMO

BACKGROUND/AIM: Androgen receptor (AR) degradation is the primary regulator of androgen receptor activity. This study was designed to investigate the influence of the proteasome on AR protein stability after enzalutamide (Enz) treatment. MATERIALS AND METHODS: Cell counting after treatment was utilized to assess the effect of Enz on cell proliferation. Changes in mRNA levels were evaluated using reverse transcription-polymerase chain reaction (RT-PCR). Proteasome activity was assessed by measurement of the chymotrypsin-like activity of the beta-5 subunit of the proteasome. Changes in protein levels after treatment with Enz, MG132 (MG), bortezomib (Bor), or their combination were assessed using western blot analysis. RESULTS: Treatment with Enz led to a significant reduction of cell proliferation and AR protein levels. However, AR mRNA levels were unchanged. Inhibition of proteasome activity by MG counteracts the Enz-mediated AR degradation transiently, whereas Bor showed no inhibition of the Enz-mediated AR degradation. CONCLUSION: Enz-mediated change in AR stability as an early and essential event after treatment was shown. However, investigations of the ubiquitin/proteasome system indicate involvement of several proteases in the Enz-mediated AR degradation process.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzamidas/farmacologia , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Bortezomib/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Leupeptinas/farmacologia , Masculino , Próstata/efeitos dos fármacos , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...